Name

Rubber Band Variables

Problem: To identify variables in an investigation

Materials:

Wooden dowel or pencil Rubber band Paper clip

Masking tape Washers Ruler

Procedure:

- 1. Tape the dowel to your desk so that it hangs over the edge.
- 2. Attach the paper clip to the rubber band, open one end of the rubber band to make a "hook" for the washers.
- 3. Hang the rubber band over the end of the dowel.
- 4. Measure the length of the rubber band in cm. Record this data.
- 5. Place 1 washer on the paper clip "hook". Measure and record the length of the rubber band again.
- 6. Continue adding washers, one washer at a time, and measuring the rubber band until a total of 10 washers have been added.

Data:

Number of Washers	Length of Rubber Band in cm
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

Analyze Data:

Make a *line graph* to show your data. Remember title, labels, and units of measurement.

	 		 	 l	l		l	I	l	l	

What relationship does this graph show?

Questions & Conclusions:

- 1. Why did we use a line graph for this data?
- 2. What was the independent variable in this investigation? (Which variable did you change?)
- 3. What was the dependent variable in this investigation? (Which variable responded to what you changed? What did you observe and measure?)
- 4. Which variables were controlled?

